A Note on the Inclusion Sets for Tensors
Vol.07No.03(2017), Article ID:79336,5 pages
10.4236/alamt.2017.73006
Jun He*, Yanmin Liu, Junkang Tian, Xianghu Liu
School of Mathematics, Zunyi Normal College, Zunyi, China
Copyright © 2017 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
Received: August 30, 2017; Accepted: September 24, 2017; Published: September 27, 2017
ABSTRACT
In this paper, we give a note on the eigenvalue localization sets for tensors. We show that these sets are tighter than those provided by Li et al. (2014) [1] .
Keywords:
Tensor Eigenvalue, Localization Set, Tensor
1. Introduction
Eigenvalue problems of higher order tensors have become an important topic of study in a new applied mathematics branch, numerical multilinear algebra, and they have a wide range of practical applications [2] - [9] .
First, we recall some definitions on tensors. Let be the real field. An m-th order n dimensional square tensor consists of nm entries in , which is defined as follows:
To an n-vector x, real or complex, we define the n-vector:
and
If , x and are all real, then is called an H-eigenvalue of and x an H-eigenvector of associated with [10] [11] .
Qi [10] generalized Geršgorin eigenvalue inclusion theorem from matrices to real supersymmetric tensors, which can be easily extended to generic tensors; see [1] .
Theorem 1. Let be a complex tensor of order dimension . Then
where is the set of all the eigenvalues of and
where
and
Recently, Li et al. [1] obtained the following result, which is also used to identify the positive definiteness of an even-order real supersymmetric tensor.
Theorem 2. Let be a complex tensor of order dimension . Then
where is the set of all the eigenvalues of and
where
In this paper, we give some new eigenvalue localization sets for tensors, which are tighter than those provided by Li et al. [1] .
2. New Eigenvalue Inclusion Sets
Theorem 3. Let be a complex tensor of order dimension . Then
where is the set of all the eigenvalues of and
where
Proof. Let be an eigenvector of corresponding to , that is,
(1)
Let
Obviously, . For any , from equality (1), we have
(2)
That is,
(3)
If for all , then , and . If , from equality (1), we have
(4)
Multiplying inequalities (3) with (4), we have
(5)
which implies that . From the arbitrariness of q, we have . ,
Remark 1. Obviously, we can get . That is to say, our new eigenvalue inclusion sets are always tighter than the inclusion sets in Theorem 2.
Remark 2. If the tensor is nonnegative, from (5), we can get
Then, we can get,
where
From the arbitrariness of q, we have
That is to say, from Theorem 3, we can get another proof of the result in Theorem 13 in [12] .
Funds
Jun He is supported by Science and technology Foundation of Guizhou province (Qian ke he Ji Chu [2016]1161); Guizhou province natural science foundation in China (Qian Jiao He KY [2016]255); The doctoral scientific research foundation of Zunyi Normal College (BS [2015]09); High-level innovative talents of Guizhou Province (Zun Ke He Ren Cai [2017]8). Yan-Min Liu is supported by National Natural Science Foundations of China (71461027); Science and technology talent training object of Guizhou province outstanding youth (Qian ke he ren zi [2015]06); Guizhou province natural science foundation in China (Qian Jiao He KY [2014]295); 2013, 2014 and 2015 Zunyi 15,851 talents elite project funding; Zhunyi innovative talent team(Zunyi KH (2015)38). Tian is supported by Guizhou province natural science foundation in China (Qian Jiao He KY [2015]451); Scienceand technology Foundation of Guizhou province (Qian ke he J zi [2015]2147). Xiang-Hu Liu is supported by Guizhou Province Department of Education Fund KY [2015]391, [2016]046; Guizhou Province Department of Education teaching reform project [2015]337; Guizhou Province Science and technology fund (qian ke he ji chu) [2016]1160.
Cite this paper
He, J., Liu, Y.M., Tian, J.K. and Liu, X.H. (2017) A Note on the Inclusion Sets for Tensors. Advances in Linear Algebra & Matrix Theory, 7, 67-71. https://doi.org/10.4236/alamt.2017.73006
References
- 1. Li, C., Li, Y. and Kong, X. (2014) New Eigenvalue Inclusion Sets for Tensors. Numerical Linear Algebra with Applications, 21, 39-50. https://doi.org/10.1002/nla.1858
- 2. Chang, K.C., Pearson, K. and Zhang, T. (2008) Perron-Frobenius Theorem for Nonnegative Tensors. Communications in Mathematical Sciences, 6, 507-520. https://doi.org/10.4310/CMS.2008.v6.n2.a12
- 3. Chang, K.C., Pearson, K. and Zhang, T. (2009) On Eigenvalue Problems of Real Symmetric Tensors. Journal of Mathematical Analysis and Applications, 350, 416-422. https://doi.org/10.1016/j.jmaa.2008.09.067
- 4. Qi, L. (2007) Eigenvalues and Invariants of Tensor. Journal of Mathematical Analysis and Applications, 325, 1363-1377. https://doi.org/10.1016/j.jmaa.2006.02.071
- 5. Qi, L. (2013) Symmetric Nonnegative Tensors and Copositive Tensors. Linear Algebra and Its Applications, 439, 228-238. https://doi.org/10.1016/j.laa.2013.03.015
- 6. Ng, M.K., Qi, L. and Zhou, G. (2009) Finding the Largest Eigenvalue of a Non-Negative Tensor. SIAM Journal on Matrix Analysis and Applications, 31, 1090-1099.
- 7. Zhang, L., Qi, L. and Zhou, G. (2012) M-Tensors and the Positive Definiteness of a Multivariate Form. Preprint, arXiv:1202.6431.
- 8. Ding, W., Qi, L. and Wei, Y. (2013) M-Tensors and Nonsingular M-Tensors. Linear Algebra and Its Applications, 439, 3264-3278. https://doi.org/10.1016/j.laa.2013.08.038
- 9. Li, C., Wang, F., Zhao, J.X., Zhu, Y. and Li, Y.T. (2014) Criterions for the Positive Definiteness of Real Supersymmetric Tensors. Journal of Computational and Applied Mathematics, 255, 1-14. https://doi.org/10.1016/j.cam.2013.04.022
- 10. Qi, L. (2005) Eigenvalues of a Real Supersymmetric Tensor. Journal of Symbolic Computation, 40, 1302-1324. https://doi.org/10.1016/j.jsc.2005.05.007
- 11. Lim, L.H. (2005) Singular Values and Eigenvalues of Tensors: A Variational Approach. Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 05), Vol. 1, IEEE Computer Society Press, Piscataway, NJ, 129-132.
- 12. Li, C., Chen, Z. and Li, Y. (2015) A New Eigenvalue Inclusion Set for Tensors and Its Applications. Linear Algebra and Its Applications, 481, 36-53. https://doi.org/10.1016/j.laa.2015.04.023
上一篇:Jordan Γ*-Derivation on 下一篇:On Classes of Matrices with Va
最新文章NEWS
- On Characterization of Poised Nodes for a Space of Bivariate Functions
- Least-Squares Solutions of Generalized Sylvester Equation with Xi Satisfies Different Linear Constra
- Matrices and Division by Zero z/0 = 0
- Jordan Γ*-Derivation on Semiprime Γ-Ring M with Involution
- Two Nonzero Component Lemma and Matrix Trigonometry
- Using Row Reduced Echelon Form in Balancing Chemical Equations
- Tight Monomials with t-Value ≤ 9 for Quantum Group of Type D4
- Minimum Covering Randić Energy of a Graph
推荐期刊Tui Jian
- Chinese Journal of Integrative Medicine
- Journal of Genetics and Genomics
- Journal of Bionic Engineering
- Chinese Journal of Structural Chemistry
- Pedosphere
- Nuclear Science and Techniques
- 《传媒》
- 《哈尔滨师范大学自然科学学报》
热点文章HOT
- Using Row Reduced Echelon Form in Balancing Chemical Equations
- Minimum Covering Randić Energy of a Graph
- A Note on the Inclusion Sets for Tensors
- A General Hermitian Nonnegative-Definite Solution to the Matrix Equation AXB = C
- Matrices and Division by Zero z/0 = 0
- Jordan Γ*-Derivation on Semiprime Γ-Ring M with Involution
- On Characterization of Poised Nodes for a Space of Bivariate Functions
- Two Nonzero Component Lemma and Matrix Trigonometry