Moore-Penrose Inverse and Semilinear Equations
Vol.08No.01(2018), Article ID:81794,7 pages
10.4236/alamt.2018.81002
Hugo Leiva, Raúl Manzanilla
Yachay Tech, School of Mathematical Sciences and Information Technology, Imbabura, Ecuador
Copyright © 2018 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
Received: November 24, 2017; Accepted: January 14, 2018; Published: January 17, 2018
ABSTRACT
In this paper, we study the existence of solutions for the semilinear equation , where is a , , and is a nonlinear continuous function. Assuming that the Moore-Penrose inverse exists ( denotes the transposed matrix of ) which is true whenever the determinant of the matrix is different than zero, and the following condition on the nonlinear term satisfied . We prove that the semilinear equation has solutions for all . Moreover, these solutions can be found from the following fixed point relation .
Keywords:
Semilinear Equations, Moore-Penrose Inverse, Rothe’s Fixed Point Theorem
1. Introduction
This work is devoted to study the existence of solutions for the following semilinear equation
(1.1)
where is a matrix, , and is a nonlinear continuous function.
Definition 1.1. The Equation (1.1) is said to be solvable if for all there exists such that
.
Proposition 1.1. The Equation (1.1) is solvable if, and only if, the operator is surjective.
The corresponding linear equation has been studied in [1] where a generalization of Cramer’s Rule is given applying the Moore-Penrose inverse that can be used when exists, and a result from [2] . More information about the Moore-Penrose inverse can be found in [3] and [4] .
In this paper, using Moore-Penrose inverse and the Rothe’s Fixed Theorem [5] [6] [7] , we shall prove the following theorem:
Theorem 1.1. If exists and is continuous and satisfies the condition
, (1.2)
then Equation (1.1) is solvable.
Moreover, for each there exists such that
,
where .
The following theorem will be used to prove our main result.
Theorem 1.2. (Rothe’s Fixed Theorem [4] [5] [6] ) Let be a Banach space. Let be a closed convex subset such that the zero of is contained in the interior of . Let be a continuous mapping with relatively compact in and . Then there is a point such that .
2. Proof of the Main Theorems
In this section we shall prove the main results of this paper, Theorem 1.1, formulated in the introduction of this paper, which concern with the solvability of the semilinear Equation (1.1).
Proof of Theorem 1.1. Using the Moore-Penrose inverse we define the operator by
,
and from condition (1.2) we obtain that
. (2.3)
Claim. The operator has a fixed point. In fact, for a fixed , there exists big enough such that
.
Hence, if we denote by the ball of center zero and radius , we get that . Since is compact and maps the sphere into the interior of the ball , we can apply Rothe’s fixed point Theorem 1.2 to ensure the existence of a fixed point such that
. (2.4)
Then,
.
Then
.
This complete the proof. □
From Banach Fixed Point Theorem it is easy to prove the following theorem that we will use to prove the next result of this paper.
Theorem 2.1. Let be a Hilbert space and is a Lipschitz function with a Lipschitz constant and consider . Then is an homeomorphism whose inverse is a Lipschitz function with a Lipschitz constant .
Theorem 2.2. If the Moore-Penrose exists and the following condition holds
, (2.5)
and
, (2.6)
then the Equation (1.1) is solvable and a solution of it is given by
, (2.7)
where .
Proof. Define the operator . Then and
,
and from condition (2.6)
. (2.8)
Therefore, from Theorem 2.1 and (2.8) we have that is a homeomorphism Lipschitizian with a Lipschitz constant .
Then,
.
Hence, is a solution of (1). In fact,
,
and this complete the proof. □
3. Practical Example
Now, we shall apply Theorem 1.1 to find one solution of the following semilinear system
(3.9)
In this case, the vector of unknown , the operators , and the system second member are:
Therefore, (3.9) can be written in the form of (1.1).
(3.10)
Applying Theorem 1.1 a solution of (3.10) can be obtained as a solution of the fixed-point problem:
(3.11)
In this particular example, one has:
(3.12)
To solve this problem numerically, one uses fixed-point iterations directly, i.e. one uses the following fixed point method:
(3.13)
and an error tolerance of , where the error is defined for each iteration as
(3.14)
In the following figures one shows the convergence process to obtain the approximate solution. Thus, Figure 1 shows the fixed-point iterations (3.13) for different groups of iterations, i.e. in the subfigure “Iteration from 0 to 7” it being showed the seven first fixed-point iteration values and the initial condition , thus in the figure “Iteration from 8 to 15” it being showed the next eight the fixed-point iteration values and so on for the other subfigures. By changing the scale in the subfigures, one observes the accumulation of the point-fixed iteration values in a specific place of space and that is an indicative of fixed-point iterations convergence.
As in the previous figure, Figure 2 shows the convergence error (3.14) of the fixed-point iterations for different groups of iterations. Herein, one can appreciate error convergences to zero quickly.
Figure 1. Convergence of fixed-point iterations.
Figure 2. Error for each iteration.
The approximated value obtained for solution of (3.13) is:
Here in, one presents the value Table 1 of fixed-point iteration.
Table 1. Fixed-point iteration values.
Supported
This work has been supported by Yachay Tech University.
Cite this paper
Leiva, H. and Manzanilla, R. (2018) Moore-Penrose Inverse and Semilinear Equations. Advances in Linear Algebra & Matrix Theory, 8, 11-17. https://doi.org/10.4236/alamt.2018.81002
References
- 1. Leiva, H. (2015) A Generalization of Cramer’s Rule. Linear Algebra and Matrix Theory, 5, 156-166. https://doi.org/10.4236/alamt.2015.54016
- 2. Burgstahier, S. (1983) A Generalization of Cramer’s Rule. The Two-Year College Mathematics Journal, 14, 203-205. https://doi.org/10.2307/3027088
- 3. Ben-Israel, A. and Greville, T.N.E. (2002) Generalized Inverses: Theory and Applications. Springer-Verlag, Berlin.
- 4. Campbell, S.L. and Meyer, C.D. (1979) Generalized Inverses of Linear Transformations. Dover Publ, New York.
- 5. Banas, J. and Goebel, K. (1980) Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Mathematics, 60. Marcel Dekker, Inc., New York.
- 6. Isac, G. (2004) On Rothe’s Fixed Point Theorem in General Topological Vector Space. Analele Stiintifice ale Universitatii Ovidius Constanta, 12, 127-134.
- 7. Smart, J.D.R. (1974) Fixed Point Theorems. Cambridge University Press, Cambridge.
上一篇:Jordan Γ*-Derivation on 下一篇:Short Retraction Notice
最新文章NEWS
- On Characterization of Poised Nodes for a Space of Bivariate Functions
- Least-Squares Solutions of Generalized Sylvester Equation with Xi Satisfies Different Linear Constra
- Matrices and Division by Zero z/0 = 0
- Jordan Γ*-Derivation on Semiprime Γ-Ring M with Involution
- Two Nonzero Component Lemma and Matrix Trigonometry
- Using Row Reduced Echelon Form in Balancing Chemical Equations
- Tight Monomials with t-Value ≤ 9 for Quantum Group of Type D4
- Minimum Covering Randić Energy of a Graph
推荐期刊Tui Jian
- Chinese Journal of Integrative Medicine
- Journal of Genetics and Genomics
- Journal of Bionic Engineering
- Chinese Journal of Structural Chemistry
- Pedosphere
- Nuclear Science and Techniques
- 《传媒》
- 《哈尔滨师范大学自然科学学报》
热点文章HOT
- Using Row Reduced Echelon Form in Balancing Chemical Equations
- Minimum Covering Randić Energy of a Graph
- A Note on the Inclusion Sets for Tensors
- A General Hermitian Nonnegative-Definite Solution to the Matrix Equation AXB = C
- Matrices and Division by Zero z/0 = 0
- Jordan Γ*-Derivation on Semiprime Γ-Ring M with Involution
- On Characterization of Poised Nodes for a Space of Bivariate Functions
- Two Nonzero Component Lemma and Matrix Trigonometry