Vol.08No.04(2018), Article ID:85792,18 pages
10.4236/ajor.2018.84017
Vandana1, Ramu Dubey2, Deepmala3, Lakshmi Narayan Mishra4,5*, Vishnu Narayan Mishra6
1Department of Management Studies, Indian Institute of Technology Madras, Chennai, India
2Department of Mathematics, Central University of Haryana, Pali, India
3Mathematics Discipline, PDPM-Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India
4Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
5L. 1627 Awadh Puri Colony Beniganj, Phase-III, Opposite-Industrial Training Institute (I.T.I.), Faizabad, India
6Department of Mathematics, Indira Gandhi National Tribal University, Lalpur, India
Copyright © 2018 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
Received: April 21, 2018; Accepted: June 30, 2018; Published: July 3, 2018
ABSTRACT
In this article, for a differentiable function , we introduce the definition of the higher-order -invexity. Three duality models for a multiobjective fractional programming problem involving nondifferen- tiability in terms of support functions have been formulated and usual duality relations have been established under the higher-order -invex assumptions.
Keywords:
Efficient Solution, Support Function, Multiobjective Fractional Programming, Generalized Invexity
1. Introduction
Consider the following nonlinear programming problem (P) Minimize subject to , where and are twice differen- tiable functions. The Mangasarian [1] second-order dualof (P) is (DP) Maximize
such that
By introducing two differentiable functions and , Mangasarian [1] formulated the following higher-order dual of (P): (DP)1 Maximize
such that where denotes the gradient of with respect to p and denotes the , gradient of with respect to p.
Further, Egudo [2] studied the following multiobjective fractional program- ming problem: (MFPP) Minimize
subject to
where and are differentiable on X. Also, he discussed duality results for Mond-Weir and Schaible type dual programs under generalized convexity.
For the nondifferentiable multiobjective programming problem: (MPP) Mini- mize
subject to where and are differentiable func- tions. and are compact convex sets in and and denote the support func- tions of compact convex sets, various researchers have worked. Gulati and Agarwal [3] introduced the higher-order Wolfe-type dual model of (MPP) and proved duality theorems under higher-order -type I-assump- tions.
In last several years, various optimality and duality results have been obtained for multiobjective fractional programming problems. In Chen [4] , multiobjective fractional problem and its duality theorems have been considered under higher- order -convexity. Later on, Suneja et al. [5] discussed higher-order Mond-Weir and Schaible type nondifferentiable dual programs and their duality theorems under higher-order -type I-assumptions. Several researchers have also worked in this directions such as ( [6] [7] ).
In this paper, we first introduce the definition of higher-order - invex with respect to differentiable function . We also construct a nontrivial numerical example which illustrates the existence of such a function. We then formulate three higher-order dual problems corresponding to the multiobjective nondifferentiable fractional programming problem. Further, we establish usual duality relations for these primal-dual pairs under aforesaid assumptions.
2. Preliminaries
Let be an open set and be differentiable functions. , , and .
Definition 2.1. is said to be (strictly) higher-order -invex at u with respect to , if there exist and such that, for any and ,
Example 2.1. Let be such that .
Let
.
Also, suppose
.
Now,
(at ).
.
Hence, is higher-order -invex at with respect to .
Remark 2.1.
1) If , then the Definition 2.1 reduces to -invex function introduced by Kuk et al. [8] .
2) If and , then the Definition 2.1 becomes that of V-invexity introduced by Jeyakumar and Mond [9] .
3) If and , then above definition yields in η-bonvexity given by Pandey [10] .
4) If , then the Definition 2.1 reduced in -invex given by Gulati and Geeta [11] .
A differentiable function is -invex if for all , is -invex.
Definition 2.2. [12] . Let C be a compact convex set in . The support function of C is defined by
3. Problem Formulation
Consider the multiobjective programming problem with support function given as: (MFP) Minimize
subject to
where , and are differentiable on X, and . Let be differentiable functions, and are compact convex sets in , for all .
Definition 3.1. [3] . A point is said to be an efficient solution (or Pareto optimal) of (MFP), if there exists no such that for every
,
and for some ,
.
We now state theorems 3.1-3.2, whose proof follows on the lines [13] .
Theorem 3.1. For some t, if and are higher- order -invex at u with respect to for same . Then, the fractional function is higher-order -invex at u with respect to , where
, ,
,
and
.
Theorem 3.2. In Theorem 3.1,if either is strictly higher- order -invex at u with respect to and or is strictly higher-order - invex at u with respect to , then is strictly higher- order -invex at with respect to .
Theorem 3.3 (Necessary Condition) [14] . Assume that is an efficient solution of (MFP) and the Slater’s constraint qualification is satisfied on X. Then there exist and , such that
(1)
(2)
(3)
(4)
(5)
(6)
Theorem 3.4. (Sufficient Condition). Let u be a feasible solution of (MFP). Then, there exist and , such that
(7)
(8)
(9)
(10)
(11)
(12)
Let, for ,
1) and be higher-order - invex at u with respect to ,
2) be higher-order -invex at u with res- pect to ,
3)
4) , and ,
5)
where
, ,
and .
Then, u is an efficient solution of (MFP).
Proof. Suppose u is not an efficient solution of (MFP). Then there exists such that
and
which implies
(13)
and
(14)
Since , inequalities (13) and (14) gives
(15)
From Theorem 3.1, for each ,
is higher-order -invex at with respect to , we have
(16)
where
, ,
,
and .
By hypothesis 2), we get
(17)
Adding the two inequalities after multiplying (16) by and (17) by , we obtain
(18)
Using hypothesis 3)-4), we get
(19)
Further, using (7)-(8), therefore
(20)
Since x is feasible solution for (MFP), it follows that
This contradicts (15). Therefore, u is an efficient solution of (MFP).
4. Duality Model-I
Consider the following dual (MFD)1 of (MFP): (MFD)1 Maximize
subject to
(21)
Let be feasible solution for (MFD)1.
Theorem 4.1. (Weak duality theorem). Let and . Suppose that
1) for any , and are higher- order -invex at u with respect to ,
2) for any , is higher-order -invex at u with respect to ,
3)
4)
where , , , and .
Then, the following cannot hold
(22)
and
(23)
Proof. Suppose that (22) and (23) hold, then using , , , , , we have
(24)
From hypothesis 1) and Theorem 3.1, for ,
is higher-order -invex at u with respect to , we get
(25)
For any , is higher-order -invex at u with respect to , we have
(26)
Adding the two inequalities after multiplying (25) by and (26) by , we obtain
(27)
Using hypothesis 3) and (21), we get
(28)
Finally, using hypothesis 4) and x is feasible solution for (MFP), it follows that
This contradicts Equation (24). Hence, the result.
Theorem 4.2. (Strong duality theorem). If is an efficient solution of (MFP) and the Slater’s constraint qualification holds. Also, if for any ,
(29)
then there exist and , such that is a feasible solution of (MFD)1 and the objective function values of (MFP) and (MFD)1 are equal. Furthermore, if the hypotheses of Theorem 4.1 hold for all feasible solutions of (MFP) and (MFD)1 then, is an efficient solution of (MFD)1.
Proof. Since is an efficient solution of (MFP) and the Slater’s constraint qualification holds, then by Theorem 3.3, there exist and , such that
(30)
(31)
(32)
(33)
(34)
Thus, is feasible for (MFD)1 and the objective func- tion values of (MFP) and (MFD)1 are equal.
We now show that is an efficient solution of (MFD)1. If not, then there exists of (MFD)1 such that
and
By equation (31), we obtain
and
This contradicts the Theorem 4.1. This complete the result.
Theorem 4.3. (Strict converse duality theorem). Let and . Let
1)
2) for any , be strictly higher-order -invex at with respect to and be higher-order -invex at with respect to ,
3) for any , be higher-order -invex at with respect to ,
4)
5)
Then, .
Proof. Using hypothesis 2) and Theorem 3.2, we have
(35)
For any , is higher-order -invex at u with respect to , we have
(36)
Adding the two inequalities after multiplying (35) by and (36) by , we obtain
(37)
Using hypothesis 3) and (21), we get
(38)
Finally, using hypothesis 4) and is feasible solution for (MFP), it follows that
This contradicts the hypothesis 1). Hence, the result.
5. Duality Model-II
Consider the following dual (MFD)2 of (MFP): (MFD)2 Maximize
subject to
(39)
(40)
(41)
(42)
Let be the feasible solution for (MFD)2.
Theorem 5.1. (Weak duality theorem). Let and . Let for ,
1) be higher-order -invex at u with res- pect to ,
2) be higher-order -invex at u with res- pect to ,
3)
4)
Then the following cannot hold
(43)
and
(44)
Proof. The proof follows on the lines of Theorem 4.1.
Theorem 5.2 (Strong duality theorem). If is an efficient solution of (MFP) and the Slater’s constraint qualification hold. Also, if for any ,
(45)
then there exist and , such that is a feasible solution of (MFD)2 and the objective function values of (MFP) and (MFD)2 are equal. Furthermore, if the conditions of Theorem 5.1 hold for all feasible solu- tions of (MFP) and (MFD)2 then, is an efficient solution of (MFD)2.
Proof. The proof follows on the lines of Theorem 4.2.
Theorem 5.3. (Strict converse duality theorem). Let and . Let ,
1)
2) be strictly higher-order -invex at with respect to ,
3) be higher-order -invex at with respect to ,
4)
5)
Then, .
Proof. The proof follows on the lines of Theorem 4.3.
6. Duality Model-III
Consider the following dual (MFD)3 of (MFP): (MFD)3 Maximize
subject to
(46)
(47)
(48)
(49)
Let be feasible solution of (MFD)3.
Theorem 6.1. (Weak duality theorem). Let and . Let ,
1) and be higher-order -invex at u with respect to ,
2) be higher-order -invex at u with res- pect to ,
3)
4)
where
, ,
,
and
.
Then, the following cannot hold
(50)
and
(51)
Proof. The proof follows on the lines of Theorem 4.1.
Theorem 6.2. (Strong duality theorem). If is an efficient solution of (MFP) and let the Slater’s constraint qualification be satisfied. Also, if for any ,
(52)
then there exist and , such that is a feasible solution of (MFD)3 and the objective function values of (MFP) and (MFD)3 are equal. Furthermore, if the conditions of Theorem 6.1 hold for all feasible solutions of (MFP) and (MFD)3 then, is an efficient solution of (MFD)3.
Proof. The proof follows on the lines of Theorem 4.2.
Theorem 6.3. (Strict converse duality theorem). Let and be feasible for (MFD)3. Suppose that:
1)
2) for any , be strictly higher-order -invex at with respect to and be higher-order -invex at with respect to ,
3) for any , is higher-order -invex at with respect to ,
4)
5)
Then, .
Proof. The proof follows on the lines of Theorem 4.3.
7. Conclusion
In this paper, we consider a class of non differentiable multiobjective fractional programming (MFP) with higher-order terms in which each numerator and denominator of the objective function contains the support function of a compact convex set. Furthermore, various duality models for higher-order have been formulated for (MFP) and appropriate duality relations have been obtained under higher-order -invexity assumptions.
Acknowledgements
The second author is grateful to the Ministry of Human Resource and Development, India for financial support, to carry this work.
Cite this paper
Vandana, Dubey, R., Deepmala, Mishra, L.N. and Mishra, V.N. (2018) Duality Relations for a Class of a Multiobjective Fractional Programming Problem Involving Support Functions. Ame- rican Journal of Operations Research, 8, 294-311. https://doi.org/10.4236/ajor.2018.84017
References
- 1. Mangasarian, O.L. (1975) Second and Higher-Order Duality in Nonlinear Programming. Journal of Mathematical Analysis and Applications, 51, 607-620. https://doi.org/10.1016/0022-247X(75)90111-0
- 2. Egudo, R.R. (1988) Multiobjective Fractional Duality. Bulletin of the Australian Mathematical Society, 37, 367-378. https://doi.org/10.1017/S0004972700026988
- 3. Gulati, T.R. and Agarwal, D. (2008) Optimality and Duality in Nondifferentiable Multiobjective Mathematical Programming Involving Higher Order (F,α,ρ,d) - Type I Functions. Journal of Applied Mathematics and Computing, 27, 345-364. https://doi.org/10.1007/s12190-008-0069-9
- 4. Chen, X. (2004) Higher-Order Symmetric Duality in Nondifferentiable Multiobjective Programming Problems. Journal of Mathematical Analysis and Applications, 290, 423-435. https://doi.org/10.1016/j.jmaa.2003.10.004
- 5. Suneja, S.K., Srivastava, M.K. and Bhatia, M. (2008) Higher Order Duality in Multiobjective Fractional Programming with Support Functions. Journal of Mathematical Analysis and Applications, 347, 8-17. https://doi.org/10.1016/j.jmaa.2008.05.056
- 6. Dubey, R. and Gupta, S.K. (2016) Duality for a Nondifferentiable Multiobjective Higher-Order Symmetric Fractional Programming Problems with Cone Constraints. Journal of Nonlinear Analysis and Optimization: Theory and Applications, 7, 1-15.
- 7. Gupta, S.K., Dubey, R. and Debnath, I.P. (2017) Second-Order Multiobjective Programming Problems and Symmetric Duality Relations with Gƒ-Bonvexity. OPSEARCH, 54, 365-387. https://doi.org/10.1007/s12597-016-0280-7
- 8. Kuk, H., Lee, G.M. and Kim, D.S. (1998) Nonsmooth Multiobjective Programs with V-ρ-Invexity. Indian Journal of Pure and Applied Mathematics, 29, 405-412.
- 9. Jeyakumar, V. and Mond, B. (1992) On Generalised Convex Mathematical Programming. Journal of the Australian Mathematical Society Series B, 34, 43-53. https://doi.org/10.1017/S0334270000007372
- 10. Pandey, S. (1991) Duality for Multiobjective Fractional Programming Involving Generalized η-Bonvex Functions. OPSEARCH, 28, 31-43.
- 11. Gulati, T.R. and Geeta (2011) Duality in Nondifferentiable Multiobjective Fractional Programming Problem with Generalized Invexity. Journal of Applied Mathematics and Computing, 35, 103-118. https://doi.org/10.1007/s12190-009-0345-3
- 12. Gupta, S.K., Kailey, N. and Sharma, M.K. (2010) Multiobjective Second-Order Nondifferentiable Symmetric Duality Involving (F,α,ρ,d) -Convex Function. Journal of Applied Mathematics and Informatics, 28, 1395-1408.
- 13. Dubey, R., Gupta, S.K. and Khan, M.A. (2015) Optimality and Duality Results for a Nondifferentiable Multiobjective Fractional Programming Problem. Journal of Inequalities and Applications, 354. https://doi.org/10.1186/s13660-015-0876-0
- 14. Reddy, L.V. and Mukherjee, R.N. (1999) Some Results on Mathematical Programming with Generalized Ratio Invexity. Journal of Mathematical Analysis and Applications, 240, 299-310. https://doi.org/10.1006/jmaa.1999.6334
NOTES
*Corresponding author.