
R. A. Dar et al. / Advances in Enzyme Research 1 (2013) 91-96 95
a single endophytic fungal strain which is a source of
anticancer molecule (podophyllotoxin) will be a very
good source for bioethanol production from low cost
substrates.
5. ACKNOWLEDGEMENTS
The authors are thankful to the Council of Scientific and Industrial
Research (CSIR), Government of India for financial support for this
work. The authors would also like to pay thanks to Dr. Ram A. Vish-
wakarma, Director, Indian Institute of Integrative Medicine (CSIR), for
providing the laboratory facilities. MS and MKS also thankful to
UGC-BSR for providing fellowship.
REFERENCES
[1] Clarke, A.J. (1997) Biodegradation of cellulose: Enzy-
mology and biotechnology. Technomic Publishing Co.
Inc., Lancaster.
[2] Wilson, D.B. (2009) The first evidence that a single cel-
lulase can be essential for cellulose degradation in a cel-
lulolytic microorganism. Molecular Microbiology, 74,
1287-1288.
http://dx.doi.org/10.1111/j.1365-2958.2009.06889.x
[3] Sukumaran, R.K., Surender, V.J., Sindhu, R., Binod, P.,
Janu, K.U., Sajna, K.V., Rajasree, K.P. and Pandey, A.
(2010) Lignocellulosic ethanol in India: Prospects, chal-
lenges and feedstock availability. Bioresource Technology,
101, 4826-4833.
http://dx.doi.org/10.1016/j.biortech.2009.11.049
[4] Perez, J., Munoz-Dorado. J., Rubia, T. and Martinez, J.
(2002) Biodegradation and biological treatments of cel-
lulose, hemicelluloses and lignin: An overview. Interna-
tional Microbiology, 5, 53-63.
http://dx.doi.org/10.1007/s10123-002-0062-3
[5] Karnchanatat, A., Petsom, A., Sangvanich, P., Piaphukiew,
J., Whalley, A.J.S., Reynold, C.D. and Sihanonth, P.
(2007) Purification and biochemical characterization of
an extracellular β-glucosidase from the wood-decaying
fungus Daldinia eschscholzii (Ehrenb. Fr.) Rehm. FEMS
Microbiology Letters, 270, 162-170.
http://dx.doi.org/10.1111/j.1574-6968.2007.00662.x
[6] Wood, T.M. (1989) Mechanisms of cellulose degradation
by enzymes from aerobic and anaerobic fungi. In: Cou-
ghlan, M.P., Ed., Enzyme Systems for Lignocellulose Deg-
radation, Elsevier, New York, 17.
[7] Vlasenko, E., Schulein, M., Cherry, J. and Xu, F. (2010)
Substrate specificity of family 5, 6, 7, 9, 12, and 45 en-
doglucanases. Bioresource Technology, 101, 2405-2411.
http://dx.doi.org/10.1016/j.biortech.2009.11.057
[8] Demain, A.L., Newcomb, M. and Wu, J.H.D. (2005)
Cellulase, clostridia, and ethnol. Microbiology and Mo-
lecular Biology Reviews, 69, 124-154.
http://dx.doi.org/10.1128/MMBR.69.1.124-154.2005
[9] Kuhad, R.C., Gupta, R. and Singh, A. (2011) Microbial
cellulases and their industrial applications. Enzyme Re-
search, 2011, Article ID: 280696.
http://www.hindawi.com/journals/er/2011/280696/
[10] Padmavathi, T., Nandy, V. and Agarwal, P. (2012) Opti-
mization of the medium for the production of cellulases
by Aspergillus terreus and Mucor plumbeus. European
Journal of Experimental Biology, 2, 1161-1170.
[11] Kim, B.H. and Wimpenny, J.W.T. (1981) Growth and
cellulytic activity of Cellulomonas flavisin. Canadian
Journal of Microbiology, 27, 1260-1266.
http://dx.doi.org/10.1139/m81-193
[12] Rajoka, M.I. and Malik, K.A. (1997) Cellulase production
by Cellulomonas biazotea cultured in media containing
different cellulosic substrates. Bioresource Technology,
59, 21-27.
[13] Senthilkumar, V. and Gunasekaran, P. (2005) Bioethanol
production from cellulosic substrates: Engineered bacte-
ria and process integration challanges. Journal of Scien-
tific & Industrial Research, 64, 845-853.
[14] Bucht, B. and Eriksson, K.E. (1969) Extracellular enzyme
system utilized by root fungus Stereum sanguinolentum
for the break down of cellulose. IV. Separation of cello-
biase and aryl β-glucosidase activities. Archives of Bio-
chemistry and Biophysics, 129, 416-420.
http://dx.doi.org/10.1016/0003-9861(69)90197-0
[15] Keilich, G., Bailey, P., Afting, E. and Liese, W. (1969)
Cellulase (beta-1, 4-glucan 4-glucanohydrolase) from the
wood-degrading fungus Polyporus schweinitzii fr.: II.
Characterization. Biochimica et Biophysica Acta (BBA)—
Enzymology, 185, 392-401.
http://dx.doi.org/10.1016/0005-2744(69)90432-X
[16] Tao, Y.-M., Zhu, X.-Z., Huang, J.-Z., Ma, S.-J., Wu, X.-B.,
Long, M.-N. and Chen Q.-X. (2010) Purification and
properties of Endoglucanase from a Sugar Cane Bagasse
Hydrolyzing Strain, Aspergillus glaucus XC9. Journal of
Agricultural and Food Chemistry, 58, 6126-6130.
http://dx.doi.org/10.1021/jf1003896
[17] Sunna, A., Moracci, M., Rossi, M. and Antranikian, G.
(1997) Glycosyl hydrolases from hyperthermophiles. Ex-
tremophiles, 1, 2-13.
http://dx.doi.org/10.1007/s007920050009
[18] Vieille, C. and Zeikus, G.J. (2001) Hyperthermophilic
enzymes: Sources, uses, and molecular mechanisms for
thermostability. Microbiology and Molecular Biology Re-
views, 65, 1-43.
http://dx.doi.org/10.1128/MMBR.65.1.1-43.2001
[19] Duff, S.J.B. and Murray, W.D. (1996) Bioconversion of
forest products industry waste cellulosics to fuel ethanol:
A review. Bioresource Technology, 55, 1-33.
http://dx.doi.org/10.1016/0960-8524(95)00122-0
[20] Omojasola, P.F. and Jilani, O.P. (2008) Cellulase produc-
tion by Trichoderma longi, Aspergillus niger and Sac-
charomy cescerevisae cultured on waste materials from
orange. Bioresource Technology, 11, 2382-2388.
http://dx.doi.org/10.3923/pjbs.2008.2382.2388
[21] Immanuel, G., Dhanusha, R., Prema, P. and Palavesam, A.
(2006) Effect of different growth parameters on endoglu-
canase enzyme activity by bacteria isolated from coir ret-
ting effluents of estuarine environment. IJES T , 3, 25-34.
[22] Bischoff, K.M., Rooney, A.P., Li, X.L., Liu, S., Hughes,
S.R. (2006) Purification and characterization of a family
5 endoglucanase from a moderately thermophilic strain of
Copyright © 2013 SciRes. OPEN ACCESS